Graphem: EM Algorithm for Blind Kalman Filtering Under Graphical Sparsity Constraints

Emilie Chouzenoux and Victor Elvira

5 de junio de 2020

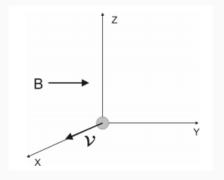
ICASSP 2020

Enunciado

Un protón ingresa con velocidad $\mathbf{v} = v_0 \hat{i}$ en una región del espacio donde existe un campo uniforme $\mathbf{B} = B_0 \hat{j}$.

- 1. Calcule la fuerza total que actúa sobre el protón.
- 2. ¿Qué tipo de movimiento realiza? Halle las ecuaciones horarias del movimiento y la trayectoria del protón.
- 3. Analizar el comportamiento en el tiempo de la energía cinética del protón.
- 4. ¿Cómo variaría la fuerza si se tratara de un protón? ¿O si se invierte el sentido de la velocidad v? ¿O si se invierte el sentido del campo B?

Como debería ser la fuerza?



Recordar que $\mathbf{F}=q(\mathbf{v}\times\mathbf{B})$. Viendo la dirección de \mathbf{v} y \mathbf{B} , nos damos cuenta que \mathbf{F} tiene que tener dirección en z.

Cálculo de la fuerza

Entonces, en el instante inicial tenemos:

$$\mathbf{F}_{m} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_{0} & 0 & 0 \\ 0 & B_{0} & 0 \end{vmatrix} = qv_{0}B_{0}\hat{k}$$

4

Cálculo de la fuerza

Entonces, en el instante inicial tenemos:

$$\mathbf{F}_{m} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_{0} & 0 & 0 \\ 0 & B_{0} & 0 \end{vmatrix} = qv_{0}B_{0}\hat{k}$$

Sin embargo, luego va a aparecer una componente en la dirección z para la velocidad:

$$\mathbf{F}_{m} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_{x}(t) & 0 & v_{z}(t) \\ 0 & B_{0} & 0 \end{vmatrix} = q(-v_{z}(t)B_{0}\hat{i} + v_{x}(t)B_{0}\hat{k})$$

4

Cálculo de la fuerza

Entonces, en el instante inicial tenemos:

$$\mathbf{F}_{m} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_{0} & 0 & 0 \\ 0 & B_{0} & 0 \end{vmatrix} = qv_{0}B_{0}\hat{k}$$

Sin embargo, luego va a aparecer una componente en la dirección z para la velocidad:

$$\mathbf{F}_{m} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_{x}(t) & 0 & v_{z}(t) \\ 0 & B_{0} & 0 \end{vmatrix} = q(-v_{z}(t)B_{0}\hat{i} + v_{x}(t)B_{0}\hat{k})$$

Ver que en este caso hay presencia de fuerzas magnéticas únicamente, por lo que la fuerza de Lorentz es igual a ${\bf F}_m$ (recordar:

$$\mathbf{F}_L = q\mathbf{E} + q(\mathbf{v} \times \mathbf{B}).$$

4

Considerando que la única fuerza que actúa sobre la partícula es la magnética (se desprecia la gravitatoria), tenemos que:

$$\mathbf{F}_m = m\mathbf{a} \to \mathbf{a} = \frac{q}{m}(\mathbf{v} \times \mathbf{B}) \tag{1}$$

Considerando que la única fuerza que actúa sobre la partícula es la magnética (se desprecia la gravitatoria), tenemos que:

$$\mathbf{F}_m = m\mathbf{a} \to \mathbf{a} = \frac{q}{m} (\mathbf{v} \times \mathbf{B}) \tag{1}$$

Esta última relación implica que la aceleración es normal al campo ${\bf B}$ y a la velocidad ${\bf v}$. Esto última implica que la aceleración solo modifica la dirección del vector velocidad, y no la magnitud del mismo. Tenemos entonces un MCU en el plano xz.

Dos caminos para obtener la ecuación de movimiento: resolvemos la ecuación diferencial o tratamos de analizar como tiene que ser.

Dos caminos para obtener la ecuación de movimiento: resolvemos la ecuación diferencial o tratamos de analizar como tiene que ser.

Recordemos que para un MCU, $|\mathbf{a}| = \frac{|\mathbf{v}|^2}{R}$, donde R es el radio de giro. Entonces, tenemos

$$\frac{|\mathbf{v}|^2}{R} = \left| \frac{q}{m} (\mathbf{v} \times \mathbf{B}) \right| = \frac{|q|}{m} |\mathbf{v}| |\mathbf{B}| \tag{2}$$

y podemos despejar R como

$$R = \frac{m|\mathbf{v}_0|}{|q||\mathbf{B}|} \tag{3}$$

Luego, sabiendo que la trayectoria $\mathbf{c}(t)$ de la partícula en función del tiempo será una circunferencia, de radio R, y partiendo de $(x_0, z_0) = (0, 0)$, tenemos:

$$c(t) = \begin{cases} x(t) = R\sin(\omega_0 t), & t \ge 0\\ z(t) = R - R\cos(\omega_0 t) = R(1 - \cos(\omega_0 t)), & t \ge 0 \end{cases}$$
(4)

donde $\omega_0 = \frac{|\mathbf{v}|}{R}$ es la velocidad angular.

Luego, sabiendo que la trayectoria $\mathbf{c}(t)$ de la partícula en función del tiempo será una circunferencia, de radio R, y partiendo de $(x_0, z_0) = (0, 0)$, tenemos:

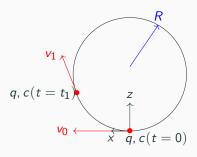
$$c(t) = \begin{cases} x(t) = R\sin(\omega_0 t), & t \ge 0 \\ z(t) = R - R\cos(\omega_0 t) = R(1 - \cos(\omega_0 t)), & t \ge 0 \end{cases}$$
(4)

donde $\omega_0=\frac{|\mathbf{v}|}{R}$ es la velocidad angular. Si comparamos con la ecuación de una circunferencia:

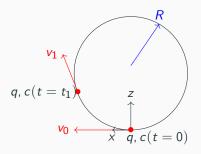
$$(x - x_0)^2 + (z - z_0)^2 = R^2$$
 (5)

vemos que la partícula hace un movimiento circular.

Trayectoria



Trayectoria



La carga se está moviendo siguiendo un MCU, donde el módulo de la velocidad es constante. Entonces, la energía cinética será

$$K = \frac{1}{2}mv_0^2 \tag{6}$$

Variantes

Si q < 0, entonces:

lacksquare La fuerza inicialmente apunta en $-\hat{k}$,

Variantes

Si q < 0, entonces:

- La fuerza inicialmente apunta en $-\hat{k}$,
- La curva ahora se encuentra en el plano xz con $z \le 0$,

Variantes

Si q < 0, entonces:

- La fuerza inicialmente apunta en $-\hat{k}$,
- La curva ahora se encuentra en el plano xz con $z \le 0$,
- El sentido de rotación será antihorario.